Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 153
Filtrar
1.
Genome Biol Evol ; 16(3)2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38478715

RESUMO

Sucking lice of the parvorder Anoplura are permanent ectoparasites with specific lifestyle and highly derived features. Currently, genomic data are only available for a single species, the human louse Pediculus humanus. Here, we present genomes of two distinct lineages, with different host spectra, of a rodent louse Polyplax serrata. Genomes of these ecologically different lineages are closely similar in gene content and display a conserved order of genes, with the exception of a single translocation. Compared with P. humanus, the P. serrata genomes are noticeably larger (139 vs. 111 Mbp) and encode a higher number of genes. Similar to P. humanus, they are reduced in sensory-related categories such as vision and olfaction. Utilizing genome-wide data, we perform phylogenetic reconstruction and evolutionary dating of the P. serrata lineages. Obtained estimates reveal their relatively deep divergence (∼6.5 Mya), comparable with the split between the human and chimpanzee lice P. humanus and Pediculus schaeffi. This supports the view that the P. serrata lineages are likely to represent two cryptic species with different host spectra. Historical demographies show glaciation-related population size (Ne) reduction, but recent restoration of Ne was seen only in the less host-specific lineage. Together with the louse genomes, we analyze genomes of their bacterial symbiont Legionella polyplacis and evaluate their potential complementarity in synthesis of amino acids and B vitamins. We show that both systems, Polyplax/Legionella and Pediculus/Riesia, display almost identical patterns, with symbionts involved in synthesis of B vitamins but not amino acids.


Assuntos
Anoplura , Legionella , Pediculus , Complexo Vitamínico B , Animais , Humanos , Filogenia , Roedores/genética , Anoplura/genética , Pediculus/genética , Especificidade de Hospedeiro/genética
2.
Mol Biol Evol ; 41(4)2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38513084

RESUMO

Insects have repeatedly forged symbioses with heritable microbes, gaining novel traits. For the microbe, the transition to symbioses can lead to the degeneration of the symbiont's genome through transmission bottlenecks, isolation, and the loss of DNA repair enzymes. However, some insect-microbial symbioses have persisted for millions of years, suggesting that natural selection slows genetic drift and maintains functional consistency between symbiont populations. By sampling in multiple countries, we examine genomic diversity within a symbiont species, a heritable symbiotic bacterium found only in human head lice. We find that human head louse symbionts contain genetic diversity that appears to have arisen contemporaneously with the appearance of anatomically modern humans within Africa and/or during the colonization of Eurasia by humans. We predict that the observed genetic diversity underlies functional differences in extant symbiont lineages, through the inactivation of genes involved in symbiont membrane construction. Furthermore, we find evidence of additional gene losses prior to the appearance of modern humans, also impacting the symbiont membrane. From this, we conclude that symbiont genome degeneration is proceeding, via gene inactivation and subsequent loss, in human head louse symbionts, while genomic diversity is maintained. Collectively, our results provide a look into the genomic diversity within a single symbiont species and highlight the shared evolutionary history of humans, lice, and bacteria.


Assuntos
Hominidae , Pediculus , Animais , Humanos , Pediculus/genética , Filogenia , Genoma Bacteriano , Evolução Molecular , Bactérias/genética , Genômica , Hominidae/genética , Insetos/genética , Simbiose/genética
3.
Zoonoses Public Health ; 71(1): 48-59, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37787179

RESUMO

The human lice Pediculus humanus is distributed worldwide but, it thrives and flourishes under conflict situations where people are forced to live in crowded unhygienic conditions. Molecular methods were used to identify and screen human lice for the DNA of pathogens of public health importance in an area that has been under insurgency related to religious and political conflicts with tens of thousands of internally displaced people (IDP). DNA of Bartonella quintana, Acinetobacter baumannii and Acinetobacter haemolyticus was detected in 18.3%, 40.0% and 1.7%, respectively, of human lice collected from children in Maiduguri, Nigeria. More body lice than head lice were positive for pathogen's DNA (64.3% vs. 44.4%; χ2 = 1.3, p = 0.33), but the difference was not significant. Two lice samples were found to harbour mixed DNA of B. quintana and A. baumannii. Phylogenetic analysis of the cytochrome b (cytb) gene sequences of the positive lice specimens placed them into clades A and E. This is the first report on the molecular identification of human lice and the detection of the DNA of pathogens of public health importance in lice in Nigeria, West Africa. The findings of this study will assist policy makers and medical practitioners in formulating a holistic healthcare delivery to IDPs.


Assuntos
Acinetobacter baumannii , Acinetobacter , Bartonella quintana , Infestações por Piolhos , Pediculus , Humanos , Animais , Pediculus/genética , Acinetobacter baumannii/genética , Bartonella quintana/genética , Nigéria/epidemiologia , Filogenia , Infestações por Piolhos/epidemiologia , Infestações por Piolhos/veterinária , África Ocidental , DNA
4.
PLoS One ; 18(11): e0293409, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37939041

RESUMO

The human louse, Pediculus humanus, is an obligate blood-sucking ectoparasite that has coevolved with humans for millennia. Given the intimate relationship between this parasite and the human host, the study of human lice has the potential to shed light on aspects of human evolution that are difficult to interpret using other biological evidence. In this study, we analyzed the genetic variation in 274 human lice from 25 geographic sites around the world by using nuclear microsatellite loci and female-inherited mitochondrial DNA sequences. Nuclear genetic diversity analysis revealed the presence of two distinct genetic clusters I and II, which are subdivided into subclusters: Ia-Ib and IIa-IIb, respectively. Among these samples, we observed the presence of the two most common louse mitochondrial haplogroups: A and B that were found in both nuclear Clusters I and II. Evidence of nuclear admixture was uncommon (12%) and was predominate in the New World potentially mirroring the history of colonization in the Americas. These findings were supported by novel DIYABC simulations that were built using both host and parasite data to define parameters and models suggesting that admixture between cI and cII was very recent. This pattern could also be the result of a reproductive barrier between these two nuclear genetic clusters. In addition to providing new evolutionary knowledge about this human parasite, our study could guide the development of new analyses in other host-parasite systems.


Assuntos
Infestações por Piolhos , Pediculus , Animais , Humanos , Feminino , Pediculus/genética , Filogenia , Infestações por Piolhos/genética , Infestações por Piolhos/parasitologia , DNA Mitocondrial/genética , Variação Genética
5.
PeerJ ; 11: e16273, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37901472

RESUMO

Head lice (Pediculus humanus capitis) are a major global concern, and there is growing evidence of an increase in head lice prevalence among Saudi schoolchildren. The purpose of this study is to investigate the prevalence of an insecticidal resistance mutation in head lice collected from schoolchildren. A polymerase chain reaction (PCR) was used to amplify a segment of the voltage-gated sodium channel gene subunit to assess the prevalence and distribution of the kdr T917I mutation in head lice. Subsequently, the restriction fragment length polymorphism (RFLP) patterns revealed two genotypic forms: homozygous-susceptible (SS) and homozygous-resistant (RR). The results showed that 17 (37.80%) of the 45 samples were SS, whereas 28 (62.2%) were RR and T917I and L920F point mutations were found in the nucleotide and amino acid sequences of RR. Compared to other nations, the frequency of permethrin resistance mutation in the head louse population in Saudi Arabia was low. This study provides the first evidence of permethrin resistance mutation in human head lice in Saudi Arabia. The findings of this study will highlight the rising incidence of the kdr mutation in head lice in Saudi Arabia.


Assuntos
Inseticidas , Infestações por Piolhos , Pediculus , Animais , Humanos , Criança , Permetrina/farmacologia , Pediculus/genética , Arábia Saudita/epidemiologia , Inseticidas/farmacologia , Prevalência , Infestações por Piolhos/epidemiologia , Mutação/genética , Estudantes
6.
Parasitol Res ; 122(12): 3087-3100, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37847393

RESUMO

An investigation was conducted for the first time to determine the prevalence and genetic diversity of human lice, for the first time in Nigeria, using conventional PCR and sequencing methods. Three mitochondrial genes, cytochrome oxidase subunit 1 (cox1), cytochrome b (cytb), and 12S rRNA of Nigerian human lice, were amplified, sequenced, and analyzed. Overall, high prevalence (72.5%; 103/142) of lice infestation was recorded among the examined volunteers. Head lice infestation was more common 63 (61.2%) than body lice infestation 34 (33.0%). Co-infestation with both head and body lice was recorded in six humans (5.8%). The Nigerian human lice specimens were placed mostly into clade A with few in clade E, including body lice for the first time. Six, three, and eight haplotypes of Nigerian human lice were obtained for the cytb, cox1, and 12S rRNA genes, respectively. Additionally, one (E51), three (A31, A32, and E5), and six (A20, A21, A23, A24, A30, and E1) novel haplotypes were recorded for cox1, cytb, and 12S rRNA, respectively, from the Nigerian specimens which were corroborated by the ML phylogenetic trees and MJ network analyses. Genetic diversity indices indicate minimal variation in the parameters analyzed among the clades of the three genes. However, a statistically significant Snn test, negative Tajima's D test for clade A (cox1 and 12S rRNA genes), and negative Fu and Li's D test in clade A for cox1 gene indicate a geographical structure and the signature of population expansion of the Nigerian human lice. The findings from this study provide additional data on the human lice structure in Africa.


Assuntos
Infestações por Piolhos , Pediculus , Animais , Humanos , Infestações por Piolhos/epidemiologia , Pediculus/genética , Filogenia , Haplótipos , Nigéria , Variação Genética , Citocromos b/genética
7.
Parasit Vectors ; 16(1): 183, 2023 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-37280715

RESUMO

BACKGROUND: The body and head lice of humans are conspecific, but only the body louse functions as a vector to transmit bacterial pathogens such as Bartonella quintana. Both louse subspecies have only two antimicrobial peptides, defensin 1 and defensin 2. Consequently, any differences in the molecular and functional properties of these two louse subspecies may be responsible for the differential vector competence between them. METHODS: To elucidate the molecular basis of vector competence, we compared differences in the structural properties and transcription factor/microRNA binding sites of the two defensins in body and head lice. Antimicrobial activity spectra were also investigated using recombinant louse defensins expressed via baculovirus. RESULTS: The full-length amino acid sequences of defensin 1 were identical in both subspecies, whereas the two amino acid residues in defensin 2 were different between the two subspecies. Recombinant louse defensins showed antimicrobial activities only against the representative Gram-positive Staphylococcus aureus but not against either Gram-negative Escherichia coli or the yeast Candida albicans. However, they did show considerable activity against B. quintana, with body louse defensin 2 being significantly less potent than head louse defensin 2. Regulatory sequence analysis revealed that the gene units of both defensin 1 and defensin 2 in body lice possess decreased numbers of transcription factor-binding sites but increased numbers of microRNA binding sites, suggesting relatively lower transcription activities of body louse defensins. CONCLUSIONS: The significantly lower antibacterial activities of defensin 2 along with the reduced probability of defensin expression in body lice likely contribute to the relaxed immune response to B. quintana proliferation and viability, resulting in higher vector competence of body lice compared to head lice.


Assuntos
Anti-Infecciosos , Bartonella quintana , Infestações por Piolhos , MicroRNAs , Pediculus , Animais , Humanos , Pediculus/genética , Pediculus/microbiologia , Bartonella quintana/genética , Infestações por Piolhos/microbiologia , MicroRNAs/genética , Fatores de Transcrição/genética , Defensinas/genética , Defensinas/farmacologia
8.
Trans R Soc Trop Med Hyg ; 117(8): 546-552, 2023 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-36919827

RESUMO

BACKGROUND: The human body louse (Pediculus humanus humanus) is a host-specific hematophagous ectoparasite that frequently infests populations experiencing a breakdown of hygienic conditions. Body lice are also vectors for several bacterial human pathogens, including Bartonella quintana, the agent of trench fever. However, the factors that influence immunity and infection in body lice are poorly understood. Human infection with B. quintana is associated with alcoholism and homelessness and can coincide with elevated circulating levels of the cytokine IL-10 and the inflammatory marker neopterin. Hematophagous arthropods are capable of responding physiologically and immunologically to a variety of biomolecules present in the blood of their hosts. Therefore, we sought to investigate whether ingestion of alcohol, its metabolic product acetaldehyde, IL-10 or neopterin could affect innate immunity and infection in the body louse. METHODS: Groups of lice were provisioned multiple blood meals containing physiological concentrations of alcohol, acetaldehyde, IL-10 or neopterin, and expression of six previously identified immunity-related genes (Defensin 1, Defensin 2, Prophenoloxidase, Hemocytin, Noduler and Dual Oxidase) was examined by qRT-PCR. RESULTS: Alcohol, acetaldehyde and IL-10 had no significant effects on gene expression relative to blood-fed controls while ingestion of neopterin significantly downregulated expression of Defensin 1 and Defensin 2. Nonetheless, ingestion of neopterin concurrent with B. quintana had no significant effect on the load of infection, indicating that neopterin-induced repression of Defensin expression is insufficient to reduce resistance to the pathogen. CONCLUSIONS: Our findings demonstrate that the immune system of body lice can be affected by factors present in the blood of their human hosts and suggest potential conservation of the function of some immune molecules from human host to ectoparasite. Further, the discord between the effects of neopterin on immunity-related gene expression and B. quintana load highlights the complexity of the regulation of pathogen infection in the louse vector.


Assuntos
Infestações por Piolhos , Pediculus , Animais , Humanos , Pediculus/genética , Pediculus/microbiologia , Interleucina-10 , Neopterina , Infestações por Piolhos/parasitologia , Imunidade Inata , Acetaldeído , Defensinas
9.
Parasit Vectors ; 16(1): 57, 2023 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-36747269

RESUMO

BACKGROUND: Head louse infestation is an important public health problem, and expanding resistance to permethrin is a major challenge to its control. The mapping and detection of pyrethroid resistance are essential to the development of appropriate treatments and ensure the effectiveness of current measures. The aim of this study was to present the phenotypic and genotypic basis of permethrin resistance and identify knockdown resistance (kdr) mutations in head louse populations in northwestern Iran. METHODS: Adult head lice were collected from 1059 infested girls in Ardebil, East Azerbaijan, West Azerbaijan and Zanjan Provinces, northwestern Iran. The toxicity of permethrin and the possible synergistic effect of piperonyl butoxide (PBO) on this toxicity were assessed using bioassays. Fragments of voltage-sensitive sodium channels (vssc) and cytochrome b (cytb) genes were amplified and analyzed for the detection of knockdown resistance (kdr) mutations and mitochondrial groups. Moreover, genotypes of the two hot spot regions of the vssc gene were determined by melting curve analysis of amplicons. RESULTS: A total of 1450 adult head lice were collected during 2016-2021. Live lice were exposed to a dose of 1% permethrin for 12 h, and the median lethal time (LT50) and time to achieve 90% mortality (LT90) were determined to be 6 and 14.8 h, respectively. Topical application of 2 and 16 ng permethrin per louse resulted in 25% and 42.11% mortality, respectively. Pre-exposure of samples to 3% piperonyl butoxide had no synergistic effect on the effects of permethrin. Analysis of the 774-bp vssc gene fragment showed the presence of the M815I, T917I and L920F mutations, wild-type and T917I mutation, in 91.6%, 4.2% and 4.2% of samples, respectively. Investigation of the mitochondrial cytb gene demonstrated the predominance of clade B. The frequency of domain II segment 4 (S4)-S5 kdr genotypes in mitochondrial groups was identical, and heterozygotes were present in 93.5% of samples. A significant difference was detected in the frequency of domain IIS1-S3 kdr genotypes, and the frequency of resistant alleles and heterozygotes was higher in clade B than in clade A. CONCLUSIONS: The presence of kdr mutations in the vssc gene and the non-synergist effect of PBO indicate that pyrethroid target site insensitivity is the main resistance mechanism. This phenomenon and the high frequency of resistant alleles necessitate that new pediculosis management programs be developed. Further studies need to be conducted to identify all factors contributing this resistance and to develop alternative pediculicides.


Assuntos
Inseticidas , Infestações por Piolhos , Pediculus , Piretrinas , Animais , Adulto , Feminino , Humanos , Permetrina/farmacologia , Pediculus/genética , Alelos , Butóxido de Piperonila/farmacologia , Irã (Geográfico) , Resistência a Inseticidas/genética , Piretrinas/farmacologia , Inseticidas/farmacologia
10.
J Med Entomol ; 60(2): 408-411, 2023 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-36708061

RESUMO

Bartonella quintana is a gram-negative bacterium causing trench fever, an illness historically acquired by soldiers during World War I. More recently, outbreaks of trench fever have been reported in those experiencing homelessness in the United States, France, Russia, and Tokyo, as well as in children in Nepal and persons in Ethiopia. Reports of B. quintana infection outside of Tokyo are rare in Japan. The aim of this study was to examine body lice and blood obtained from people staying in shelters in Osaka (2009-2010) for B. quintana via polymerase chain reaction and enzyme-linked immunosorbent assays. Day laborers were defined as homeless individuals and shelter residents in this study. We detected genes of B. quintana in body lice by PCR and antibodies against B. quintana. The positive rate of B. quintana genes was 6/10 (60%) in body lice and the seroprevalence (IgG) of B. quintana was 4/10 (40%). This demonstrates that trench fever was endemic in people staying in shelters in Osaka in 2009-2010.


Assuntos
Bartonella quintana , Infestações por Piolhos , Pediculus , Febre das Trincheiras , Animais , Bartonella quintana/genética , Febre das Trincheiras/epidemiologia , Febre das Trincheiras/microbiologia , Bartonellaceae , Japão/epidemiologia , Estudos Soroepidemiológicos , Infestações por Piolhos/epidemiologia , Pediculus/genética , Pediculus/microbiologia
11.
Med Vet Entomol ; 37(2): 209-212, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-35822871

RESUMO

There are at least three known knockdown resistance (kdr) mutations reported globally in the human head louse Pediculus humanus capitis De Geer (Phthiraptera: Anoplura) that are associated with reduced sensitivity to pyrethroids. However, the prevalence of kdr mutation in head lice is not known in the Indian subcontinent. To identify kdr mutations in the Indian head lice population, the genomic region of the voltage-gated sodium channel gene encompassing IIS1-2 linker to IIS6 segments was PCR-amplified and sequenced from P. humanus capitis samples collected from different geographic localities of India. DNA sequencing revealed the presence of four kdr mutations: M827I, T929I, L932F and L1014F. The presence of a classical kdr mutation L1014F, the most widely reported mutation across insect-taxa associated with the kdr-trait, is being reported for the first time in P. humanus capitis.


Assuntos
Inseticidas , Infestações por Piolhos , Pediculus , Piretrinas , Humanos , Animais , Pediculus/genética , Resistência a Inseticidas/genética , Infestações por Piolhos/veterinária , Mutação , Inseticidas/farmacologia , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/genética
12.
Clin Infect Dis ; 76(8): 1382-1390, 2023 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-36571112

RESUMO

BACKGROUND: Louse-borne trench fever caused by Bartonella quintana is a neglected public health concern, known to be transmitted from body louse feces via scratching. No viable B. quintana have ever been isolated from head lice before; therefore, their role as a vector is still poorly understood. METHODS: In Senegal, the implementation of a permanent local surveillance system in a point-of-care laboratory (POC) allows the monitoring of emerging diseases. Here we used culture as well as molecular and genomic approaches to document an outbreak of trench fever associated with head lice in the village of Ndiop. Head lice and blood samples were collected from febrile patients between November 2010 and April 2015. Genomes of 2 isolated strains of B. quintana were sequenced and analyzed. RESULTS: A total of 2289 blood samples were collected in the 2010-2015 period. From 2010-2013, B. quintana DNA was detected by polymerase chain reaction (PCR) in 0.25% (4/1580). In 2014, 228 blood samples were collected, along with 161 head lice from 5 individuals. B. quintana DNA was detected in 4.4% (10/228) of blood samples, and in lice specimens collected from febrile patients (61.7%, 50/81) and non-febrile patients (61.4%, 43/70). Two B. quintana strains were isolated from blood and head lice from 2 different patients. Genomic sequence analysis showed 99.98% overall similarity between both strains. CONCLUSIONS: The presence of live B. quintana in head lice, and the genetic identity of strains from patients' blood and head lice during a localized outbreak in Senegal, supports the evidence of head lice vectorial capacity.


Assuntos
Bartonella quintana , Infestações por Piolhos , Pediculus , Febre das Trincheiras , Animais , Humanos , Bartonella quintana/genética , Pediculus/genética , Febre das Trincheiras/epidemiologia , Senegal/epidemiologia , Infestações por Piolhos/epidemiologia , Surtos de Doenças , DNA
13.
Cell Mol Biol (Noisy-le-grand) ; 67(4): 382-389, 2022 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-35809265

RESUMO

Pediculosis is an integumentary disease caused by the ecto-parasite Pediculus humanus capitis, which infests human hair. It is a common public health problem that is most prominent worldwide in elementary school children. The current study aimed to investigate the prevalence, risk factors, and genetic diversity of P. humanus capitis among primary school children in the Erbil province. For this purpose, this study was conducted from October 2019 to December 2019 among 1100 randomly selected elementary school children aged 6-12. Data collection was performed via a regular questionnaire and physical hair examination. For the genetic diversity part, after collecting one louse randomly from each individual, DNA was extracted. The mitochondrial Cox1 gene was then amplified by universal primer and PCR. Gene sequencing was performed by ABI (BioNEER, South Korea). Data analysis was done by Chi-Square and T-test using the SPSS ver. 23. The overall infestation rate was 21.27%, and the rate was significantly higher among females (34.93%) compared to males (7.91%). Some variables had found the prevalence rate to be strongly affected. This included age; the rate was not significant (26.87%) in the age group 8-9 years compared to other age groups. According to hair length, the rate was significantly increased (36.52%) among children with tall hair. In terms of hair type, the incidence of curly-haired children was significantly higher (31.54%); in terms of hair color, there were not significant differences among blonde children (25.90%) and others. According to the results of Cox1 gene sequencing, of 234 infested children to lice, 86 (36.75%) of them were exposed to clade A, 38 (16.24%) were exposed to clade B, clade C has not been seen among any children (0%), 105 students (44.87%) were exposed to clade D, and 5 of them exposed to clade E (2.14%). Eventually, a significantly higher incidence (33.78%) was reported in rural primary school children. The infection rate of human head lice in Erbil province is still high, which is one of the health problems of children in public schools.


Assuntos
Pediculus , Adulto , Animais , Criança , Feminino , Variação Genética , Humanos , Masculino , Pediculus/genética , Prevalência , Fatores de Risco , Instituições Acadêmicas
14.
Pathog Dis ; 80(1)2022 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-35803580

RESUMO

Bartonella quintana is a re-emerging louse-borne pathogen. Horizontal transmission from the body louse vector (Pediculus humanus humanus) to a human host occurs through contact with infectious louse feces containing a high concentration of the bacteria. However, questions have remained about whether vertical transmission from infected vectors to their progeny, which could significantly influence the dynamics of transmission to humans, occurs in body lice. To address this subject, we performed a series of controlled laboratory experiments that examined the presence of B. quintana on the surface of and within eggs produced by female body lice that were provisioned multiple infectious blood meals to recapitulate the natural pathogen acquisition process. Our results demonstrate that B. quintana DNA can be detected from the surface of eggs by qPCR due to vertical transfer of infectious feces to the egg sheath during or after oviposition. However, viable B. quintana could not be cultured from the hemolymph of adult female lice or from within eggs that were surface sterilized, indicating a lack of true transovarial transmission. Based on this evidence, vertical transfer of B. quintana from infected adult lice to their eggs probably has a limited impact on the dynamics of transmission to humans.


Assuntos
Bartonella quintana , Doenças Transmissíveis , Infestações por Piolhos , Pediculus , Adulto , Animais , Bartonella quintana/genética , Feminino , Humanos , Refeições , Pediculus/genética , Pediculus/microbiologia , Reação em Cadeia da Polimerase em Tempo Real
15.
Korean J Parasitol ; 60(3): 217-221, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35772742

RESUMO

The head louse Pediculus humanus capitis (De Geer) is a hematophagous ectoparasite that inhabits the human scalp. The infestations are asymptomatic; however, skin irritation from scratching occasionally may cause secondary bacterial infections. The present study determined the presence and frequency of the knockdown resistance (kdr) mutation T929I in 245 head lice collected from Mexico, Peru, and Canada. Head lice were collected manually using a comb in the private head lice control clinic. Allele mutation at T9291 was present in 100% of the total sampled populations (245 lice) examined. In addition, 4.89% of the lice were homozygous susceptible, whereas 6.93% heterozygous and 88.16% homozygous were resistant, respectively. This represents the second report in Mexico and Quebec and fist in Lima.


Assuntos
Inseticidas , Infestações por Piolhos , Pediculus , Animais , Canadá , Frequência do Gene , Humanos , Resistência a Inseticidas/genética , Inseticidas/farmacologia , Infestações por Piolhos/parasitologia , México , Mutação , Pediculus/genética , Peru , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/genética
16.
Zoonoses Public Health ; 69(6): 729-736, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35726500

RESUMO

Lice represent one of the most neglected group of vectors worldwide, particularly in Latin America. Records of bacterial agents related to head lice are non-existent in this region of the continent. Many of these communities often do not have adequate access to public services and/or health protection. The normalization of this condition prevents them from manifesting discomfort, such as bites and itching, which further aggravates the situation, as they can be vectors of important diseases. For this reason, the aim of this work was to identify the richness of bacterial pathogens (Acinetobacter, Bartonella, and Rickettsia) and endosymbionts (Wolbachia) in head lice of paediatric patients from the indigenous municipality of Hoctun, Yucatan, Mexico. DNA extraction was performed using the QIAamp DNA Mini Kit. For the detection of bacterial pathogens, fragments of the gltA, rpoB, and 16S rDNA genes were amplified. For the detection of Wolbachia, the wsp gene was amplified. Of the 28 lice analysed, the presence of two genera of bacterial pathogens was detected Acinetobacter (42.9% = 12/28) and Bartonella (7.14% = 2/28). We also detected the endosymbiont Wolbachia (71.42% = 20/28). Our results showed that DNA from three bacteria species (Acinetobacter baumannii, Bartonella quintana, and Wolbachia pipientis) was present with frequencies ranging from 3.57% to 71.42%. This work represents the first exploratory study of the diversity of agents associated with head lice (Pediculus humanus capitis) in Mexico and Latin America. Due to the findings generated in the present study, it is important to perform surveillance of head lice populations to identify the degree of spread of these pathogens and their impact on populations in the region.


Assuntos
Acinetobacter , Infestações por Piolhos , Pediculus , Acinetobacter/genética , Animais , Bactérias/genética , DNA , Humanos , Infestações por Piolhos/epidemiologia , Infestações por Piolhos/veterinária , México/epidemiologia , Pediculus/genética , Pediculus/microbiologia , Filogenia
17.
Infect Dis Poverty ; 11(1): 58, 2022 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-35619191

RESUMO

BACKGROUND: Human pediculosis is caused by hematophagous lice, which are transmitted between individuals via direct and/or indirect contact. Despite the public health importance of louse infestation, information concerning the global burden of pediculosis and the epidemiological landscape of louse-borne diseases is limited. The aim of this review was to summarize the biology, epidemiology, diagnosis, and control of lice infestation in humans. We also discussed the latest advances in molecular taxonomy and molecular genetics of lice. METHODS: We searched five electronic bibliographic databases (PubMed, ScienceDirect, CNKI, VIP Chinese Journal Database, and Wanfang Data) and followed a standard approach for conducting scoping reviews to identify studies on various aspects of human lice. Relevant information reported in the identified studies were collated, categorized, and summarized. RESULTS: A total of 282 studies were eligible for the final review. Human pediculosis remains a public health issue affecting millions of people worldwide. Emerging evidence suggests that head lice and body lice should be considered conspecific, with different genotypes and ecotypes. Phylogenetic analysis based on mitochondrial (mt) cytb gene sequences identified six distinct clades of lice worldwide. In addition to the direct effect on human health, lice can serve as vectors of disease-causing pathogens. The use of insecticides plays a crucial role in the treatment and prevention of louse infestation. Genome sequencing has advanced our knowledge of the genetic structure and evolutionary biology of human lice. CONCLUSIONS: Human pediculosis is a public health problem affecting millions of people worldwide, particularly in developing countries. More progress can be made if emphasis is placed on the use of emerging omics technologies to elucidate the mechanisms that underpin the physiological, ecological, and evolutionary aspects of lice.


Assuntos
Inseticidas , Infestações por Piolhos , Pediculus , Animais , Humanos , Infestações por Piolhos/epidemiologia , Pediculus/genética , Filogenia , Saúde Pública
18.
Genes (Basel) ; 13(3)2022 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-35328076

RESUMO

Animal mitochondrial (mt) genomes are typically double-strand circular DNA molecules, but diverse structural variations have been widely found in multiple groups. In parasitic lice (Phthiraptera), the structure of mt genomes varies remarkably across all five suborders. In this study, we reported the complete mt genome of a chicken body louse, Menacanthus cornutus, which has a typical single circular mt chromosome and drastic mt gene rearrangements. This mt genome is 15,693 bp in length, consisting of 13 protein-coding genes, 23 tRNA genes, 2 rRNA genes, and a control region. A comparison with a typical insect mt genome suggested that two highly similar trnM are present in the mt genome of M. cornutus. Moreover, almost every single gene was rearranged, and over half of mt genes were inverted. Phylogenetic analyses inferred from the mt genome sequences supported the monophyly and position of Amblycera. Mapped over the phylogenetic relationships of Amblycera, we identified two inversion events for the conserved gene blocks in Boopidae and Menoponidae. The inverted ND4L-ND4 was likely a synapomorphic rearrangement in Menoponidae. Our study demonstrated the importance of sequencing mt genomes for additional taxa to uncover the mechanism underlying the structural evolution of the mt genome in parasitic lice.


Assuntos
Amblíceros , Genoma Mitocondrial , Pediculus , Amblíceros/genética , Animais , Galinhas/genética , Rearranjo Gênico , Genoma Mitocondrial/genética , Pediculus/genética , Filogenia
19.
Sci Rep ; 12(1): 4307, 2022 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-35279677

RESUMO

The head louse, Pediculus humanus capitis, is a strictly obligate human ectoparasite with a long history of association with humans. Here, 17 ancient head lice nits were recovered from six shrunken human heads (known as tsantsas) of individuals from the Shuar/Jivaro tribe, a native Amazonian population from Ecuador, South America. Cytochrome b DNA analysis revealed the presence of three known mitochondrial clades. Clade A was the most frequent (52.94%), followed by F (35.29%), and B (11.76%). Eleven haplotypes were found in 17 samples, and nine of the haplotypes were novel, indicating an unusually high genetic diversity. In conclusion, we confirmed the presence of clades A, B and F in South Amerindian population. Moreover, the description of clade F, together with its previous reports in another Amerindian population from French Guiana, strongly support the hypothesis of a native South American origin for this clade, and probably derived from clade B which was carried to America by an ancestral Eurasian Beringian population. Further support to our conclusion and new insights might come from the analysis of a larger collection of modern and ancient native American lice.


Assuntos
Infestações por Piolhos , Pediculus , Animais , Citocromos b/genética , Variação Genética , Humanos , Infestações por Piolhos/epidemiologia , Infestações por Piolhos/parasitologia , Pediculus/genética , Filogenia
20.
Front Cell Infect Microbiol ; 12: 834388, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35310843

RESUMO

Pediculus humanus is an obligate bloodsucking parasite of humans that has two ecotypes, the head louse and the body louse, which share an intimate history of coevolution with their human host. In the present work, we obtained and analysed head and body lice collected from Mbuti pygmies living in the Orientale province of the Democratic Republic of the Congo. Cytochrome b DNA analysis was performed in order to type the six known lice clades (A, D, B, F, C and E). The results revealed the presence of two mitochondrial clades. Clade D was the most frequent (61.7% of 47), followed by clade A (38.3% of 47). Sixteen haplotypes were found in 47 samples, of which thirteen were novel haplotypes, indicating an unusually high genetic diversity that closely mirrors the diversity of their hosts. Moreover, we report for the first time the presence of the DNA of R. felis in three (6.4% of 47) head and body lice belonging to both clades A and D. Additional studies are needed to clarify whether the Pediculus lice can indeed transmit this emerging zoonotic bacterium to their human hosts.


Assuntos
Pediculus , Rickettsia felis , Animais , República Democrática do Congo , Variação Genética , Humanos , Pediculus/genética , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...